Banner de la página interior
Clasificadora inteligente de rayos X
  • La tecnología de separación fotoeléctrica contribuye a la gestión de riesgos de los relaves La tecnología de separación fotoeléctrica contribuye a la gestión de riesgos de los relaves Nov 22, 2022
    La tecnología de separación fotoeléctrica contribuye a la gestión de riesgos de los relavesA principios de noviembre, la Administración Estatal de Seguridad Minera emitió un aviso sobre el plan general para la gestión de riesgos ocultos en los depósitos de relaves, en vista del riesgo de problemas ocultos en el tratamiento del estanque de relaves, el documento presenta el principio de organizar e implementar las medidas de acuerdo con las condiciones locales, medidas integrales, dando prominencia a los puntos clave e implementándolas paso a paso, cerrando el estanque. y cancelar el número, eliminar los riesgos, asumir la responsabilidad, fortalecer la gestión, considerar en su conjunto y avanzar de manera integral, según el nivel de riesgo, realizar la gestión de riesgos del estanque de relaves por lotes y años, y esforzarse por alcanzar hasta el nivel de 2026, se han completado en todo el país alrededor de 200 "depósitos aéreos", 700 depósitos sin un cuerpo principal de producción y operación, y depósitos de relaves de peligros ocultos extintos a largo plazo y de alto riesgo.Según estadísticas incompletas, en la actualidad nuestro país cuenta con depósitos de relaves y rocas estériles. Las minas no metálicas (excepto la minería del carbón) producen cada año alrededor de mil millones de toneladas de rocas estériles y acumulan más de 10 mil millones de toneladas; Cada año, se añaden a las minas metálicas alrededor de 3 mil millones de toneladas de roca estéril, y el stock acumulado de desechos sólidos industriales, como roca estéril y relaves, ha alcanzado más de 70 mil millones de toneladas y aumenta continuamente. Si los desechos sólidos de las minas no se pueden descargar y almacenar científicamente, destruirán bosques, ocuparán tierras, contaminarán el agua y el medio ambiente e incluso causarán graves accidentes de seguridad.En la actualidad, en vista de los relaves y los relaves, la generación y utilización de relaves y los relaves se pueden reducir tanto como sea posible en el eslabón de producción mediante el código abierto y la estrangulación, los relaves y los relaves existentes a través de cómo se pueden utilizar. para lograr la utilización.Utilización de relavesSu objetivo principal es mejorar la recuperación de componentes de alto valor en los relaves y mejorar los beneficios económicos de los relaves.1) los relaves se separan mediante equipos de separación fotoeléctrica. Con la premisa de aumentar en gran medida el índice de utilización integral de los relaves, los relaves se enriquecen para que los minerales metálicos alcancen el grado minero económico. Los minerales no metálicos se separan mediante equipos y la roca estéril se prefabrica para separar los minerales no metálicos que tienen valor económico.(2) fortalecer la cobertura vegetal y el manejo de los terrenos mineros, y reducir el daño e impacto ambiental mediante recuperación y forestación.El uso de roca estéril.1) en la roca estéril, también hay algunos minerales metálicos de alto valor, que tienen un alto valor de reciclaje, y la ley suele ser más alta que la ley del mineral primario correspondiente, como el enriquecimiento y recuperación de oro mediante flotación química mixta, sulfuro. molienda de concentrados, lixiviación con cianuro, separación fotoeléctrica, etc.2) puede rellenar la mina con roca estéril y utilizarla como material de relleno de la mina.En una palabra, en vista del tratamiento de los estanques de relaves y la producción de relaves, el beneficio económico es la guía y la introducción y uso de nueva tecnología es la guía. Puede reducir la dificultad y el costo del tratamiento del depósito de relaves, mejorar el valor de utilización integral de la mina, reducir el impacto a largo plazo en el medio ambiente y ahorrar una gran cantidad de tratamiento de relaves costo.Máquina clasificadora inteligente de rayos XHefei Mingde tecnología optoelectrónica co. , Ltd. es una empresa nacional de alta tecnología dedicada a la tecnología de clasificación inteligente y soluciones integradas de rayos X. La empresa siempre se ha centrado en el campo de la separación de minerales, la investigación y la producción de separadores de color de minerales, separadores de inteligencia artificial y separadores inteligentes de rayos X, que se pueden aplicar a casi 100 tipos de aplicaciones de separación de minerales metálicos y no metálicos. Su tecnología de separación fotoeléctrica no es solo una innovación en la tecnología de procesamiento de minerales, sino que también tiene una influencia de gran alcance en toda la industria y el vínculo minero, como minas, minas, estanques de relaves, etc.Valor y ventajas de la clasificación fotoeléctrica.Mediante separación física, utilizando la diferencia de características de la superficie del mineral o la diferencia de densidad interna para la separación. En comparación con la flotación, trituración y separación tradicionales de relaves en una forma lodosa, difícil de tratar, con daños ambientales profundos, separación fotoeléctrica de especificaciones de materiales de 0,3 cm o más, los relaves de desecho después de la separación se pueden usar directamente como relleno y construcción. materiales, lo que reduce la dificultad del tratamiento de relaves, mejora el valor económico de la mina e indirectamente prolonga la vida útil de la mina. Al mismo tiempo, en consonancia con la tendencia política de la minería, se reduce considerablemente la producción de relaves.
  • Cómo seleccionar una máquina clasificadora de minerales fotoeléctrica adecuada Cómo seleccionar una máquina clasificadora de minerales fotoeléctrica adecuada Jul 11, 2024
    La clasificación fotoeléctrica es un método importante de clasificación de minerales en la preclasificación de minerales. El equipo de clasificación fotoeléctrico es un dispositivo que completa directamente el proceso de clasificación de minerales. Durante el proceso de clasificación de minerales, el equipo de clasificación identifica el mineral a través de sus características físicas, principalmente a través de las diferencias de color, textura, textura, forma, brillo, densidad y otras características, para lograr la clasificación de minerales útiles y minerales de ganga.En la actualidad, los equipos de clasificación de minería de uso común incluyen principalmente clasificadores de color de mineral, clasificadores de inteligencia artificial y clasificadores inteligentes de rayos X. A continuación, lo llevaremos a comprender cada tipo de equipo de clasificación para minería y su alcance aplicable uno por uno, y lo ayudaremos a elegir correctamente el equipo de clasificación adecuado.1. Clasificador de color de mineralEl clasificador de color de mineral se basa principalmente en la diferencia de color de los materiales. Integra equipos ópticos, mecánicos y eléctricos para lograr la clasificación y purificación de materiales mediante detección fotoeléctrica y procesamiento de imágenes. Pertenece a una clasificadora de minerales por color.Este tipo de clasificadora por color de mineral integra altas tecnologías como luz, maquinaria, electricidad y gas. Se utiliza ampliamente en la clasificación de materiales para mejorar la calidad de los productos materiales. En los últimos años, las clasificadoras de color nacionales han acelerado continuamente el ritmo de la innovación tecnológica. Los fabricantes han crecido gracias a la exploración y la innovación, los componentes clave se han actualizado y los productos de primera línea se han vuelto cada vez más maduros en términos de estabilidad, confiabilidad y efectos de clasificación de alta precisión.El clasificador de color de mineral incluye principalmente un cucharón vibratorio, una unidad principal para alimentación, clasificación y descarga integradas y un panel de operación sensible al tacto. Durante el trabajo, el mineral ingresa a la oruga a través de la tolva de alimentación del clasificador por color y se transporta rápidamente a la caja de clasificación. Cada mineral se escanea línea por línea a través de dos conjuntos de cámaras de alta definición y la información relevante se transmite al sistema central a través del sensor. El sistema central compara la longitud de onda o frecuencia de los diferentes colores de las ondas de luz reflejadas de los minerales superiores e inferiores con los parámetros establecidos, y luego identifica la ubicación del mineral heterocromático a eliminar mediante un complejo algoritmo y emite instrucciones al solenoide correspondiente. válvula, utilizando fuerza neumática para una separación precisa.La clasificadora de color de mineral tiene una amplia gama de aplicaciones, principalmente para minerales con diferencias de color, como cuarzo, carbonato de calcio, barita, calcita, dolomita, feldespato potásico, wollastonita, fluorita, mineral de tungsteno y otros minerales.2. Máquina clasificadora de inteligencia artificialLa máquina clasificadora de inteligencia artificial se basa principalmente en la tecnología de la máquina clasificadora fotoeléctrica de IA y utiliza inteligencia artificial, aprendizaje profundo, big data y tecnología de mejora visual de imágenes para identificar y clasificar el mineral.Este tipo de equipo de clasificación utiliza tecnología de inteligencia artificial para solucionar el problema original de limitación del material de clasificación por color, ampliar en gran medida el escenario de aplicación de clasificación y cumplir con el uso de clasificación de algunos minerales difíciles y complejos.El equipo se compone principalmente de un cucharón vibratorio, un host y una plataforma de operación de microcomputadora. Al trabajar, es necesario clasificar manualmente una cantidad de minerales útiles y minerales de ganga, y realizar la adquisición de imágenes y el entrenamiento en la máquina de inteligencia artificial, respectivamente. El equipo extraerá automáticamente la textura de la superficie, el brillo, la textura, la forma, el color y otras características de los minerales útiles y los minerales de ganga para establecer un modelo de clasificación.Durante el proceso de clasificación, el mineral ingresa a la oruga a través de la tolva de alimentación de la máquina inteligente y ingresa a la caja de clasificación después de un transporte rápido. Los conjuntos superior e inferior de cámaras de ultra alta definición realizarán un escaneo estereoscópico multidimensional de cada material mineral y transmitirán la información de cada material mineral desde el sensor a la computadora industrial. Identifica minerales útiles y minerales de ganga mediante algoritmos y reconocimiento de modelos, y emite instrucciones a la válvula solenoide correspondiente al área de ganga, utilizando fuerza neumática para una separación precisa.El equipo se entrena y modela principalmente en función de las características multidimensionales de la superficie del mineral, y luego se identifica y separa. El equipo se puede ajustar según la situación del sitio y puede lograr una clasificación de mineral diversificada.Las máquinas clasificadoras de inteligencia artificial son adecuadas para minerales complejos y difíciles de clasificar. Siempre que el mineral tenga textura superficial, brillo, textura, forma, color y otras características de la superficie, se puede clasificar, como guijarros, sílice, wollastonita, escoria de silicio, mineral de oro, talco, mineral de fosfato, caolinita a base de carbón, fluorita, mineral de litio y otros minerales. La clasificación general, la precisión y la adaptabilidad son muy superiores a las de las clasificadoras de colores tradicionales.3. Máquina clasificadora inteligente de rayos XLa máquina clasificadora inteligente de rayos X es principalmente XRT (tecnología de transmisión), que detecta los valores característicos del tamaño, espesor, densidad del mineral y la diferencia en la reacción de elementos y secuencias atómicas de componentes relacionados a los rayos X a través de rayos X. para lograr la separación de residuos mineros. Esta tecnología es adecuada principalmente para minerales metálicos que no pueden clasificarse manualmente debido a las características de la superficie.Su principio de funcionamiento: el mineral y la ganga a clasificar deben tener diferencias evidentes de densidad. El proceso específico es el siguiente: primero, se debe tomar una pequeña cantidad de mineral y ganga para entrenar. Las diferentes densidades hacen que los rayos X absorban diferentes grados al transmitir minerales y gangas. Luego la cámara se utiliza para recolectar y transmitir. El valor de la escala de grises de la imagen es diferente después del algoritmo y la imagen por computadora industrial. Se construye el modelo de aprendizaje profundo. Cuando se produce la máquina de rayos X, el sistema de alimentación ingresará al área de detección a alta velocidad desde la oruga. La radiografía transmitirá cada mineral y ganga. La cámara de alta definición multicanal de desarrollo propio se utiliza sucesivamente para la adquisición y transmisión de señales a la computadora industrial. Utiliza algoritmos complejos y procesamiento de imágenes, y luego compara e identifica con los parámetros del modelo establecido. La computadora industrial enviará instrucciones a la válvula de gas en la posición correspondiente de la ganga y utilizará fuerza neumática para separar la ganga para lograr el propósito de eliminación y enriquecimiento de desechos.La máquina clasificadora inteligente de rayos X es adecuada para minerales con diferencias de densidad como ganga de carbón, plomo-zinc, estaño, antimonio, tungsteno, cobre, manganeso, titanio, fluorita y otros minerales metálicos y no metálicos.
  • How to Conduct the Ore Photoelectric Sorting Experiment? How to Conduct the Ore Photoelectric Sorting Experiment? Aug 24, 2024
    Ore sorting experiment is a key link in the processing of mineral resources, which involves knowledge in multiple fields such as physics and chemistry. Through experiments, the optimal mineral processing process, equipment configuration and operating conditions can be determined, thereby improving the grade and recovery rate of ore and reducing production costs. Ore sorting experiment is a key process in mining engineering, which involves a series of complex processes such as ore crushing, grinding, screening, and sorting. So how can we do a good job in ore sorting experiment? First of all, if we want to do a good ore sorting experiment, we need to know what factors will affect the accuracy of the ore sorting experiment? Only by clarifying the influencing factors can we avoid errors and solve problems in a targeted manner. There are many factors that affect the accuracy of ore sorting experiments, which can be analyzed from the following aspects: Ore properties The physical and chemical properties of ore are the primary factors affecting the accuracy of mineral processing tests. The complexity of ore composition, the embedding characteristics of minerals, the particle size distribution, and the density difference will all affect the sorting effect. For example, the content of associated minerals and impurities in the ore, the structural structure of the ore, and the particle size and shape of the ore will all affect the sorting process. Experimental conditions The stability of the experimental conditions is crucial to the accuracy of the experimental results. The stability of the laboratory environment and equipment, such as temperature, humidity, vibration, etc., may affect the accuracy of ore sorting. In addition, the technical level and experience of the experimental operators also have a significant impact on the experimental results. Data analysis A large amount of experimental data needs to be accurately analyzed and processed to ensure the reliability of the results. The accuracy of data analysis depends on the accuracy of the analytical methods and tools used. The use of advanced data analysis software and methods, such as statistical analysis, simulation and optimization design, can improve the accuracy and reliability of data analysis. Process parameters Process parameters, such as crushing fineness, have a direct impact on the mineral processing effect. Crushing fineness determines the degree of dissociation of minerals. Environmental factors Environmental factors, including the geographical location of the mine, climatic conditions, and water sources, will also affect the operating status of the mineral processing equipment and the effect of the reagents. Equipment performance The performance and configuration of mineral processing equipment directly affect the mineral processing efficiency and the quality of the final product. The stability, accuracy and automation of the equipment are all key factors affecting the effect of mineral processing. These factors will more or less affect the results of the ore sorting experiment. To improve the accuracy of the ore sorting experiment, it is necessary to comprehensively consider and optimize these aspects. For the above-mentioned influencing factors, we can make preparations before and during sorting. Before conducting an ore sorting experiment, it is necessary to make adequate preparations to ensure the accuracy and reliability of the experimental results. The following is a detailed introduction to the preparations that need to be done before the experiment. Ore property research Before conducting an ore sorting experiment, it is necessary to first conduct a comprehensive property study on the ore. This includes spectral analysis, multi-element analysis, and X-ray diffraction analysis of the ore to identify the beneficial and harmful elemental components in the ore. In addition, it is necessary to conduct phase analysis of the valuable and harmful elements in the sample to provide guidance for the process flow. The determination of the physical properties of the sample, such as dissociation degree, hardness, true density, loose density, grindability, etc., is also essential. Sample preparation The representativeness of the sample is crucial to the accuracy of the experimental results. It is necessary to provide representative samples, the quantity of which is usually not less than 200 kg, and even more than 500 kg is required depending on the specific situation of the gold ore sample. If the samples come from multiple veins (belts, points), each ore point needs to be sampled separately, and each point sample must be no less than 50 to 100 kg. The sampling should be carried out by the technical personnel of geology, mining and mineral processing to avoid unilateral operation. Equipment inspection and maintenance Before the experiment, all equipment should be inspected in detail to ensure that they can operate normally. The stability of the equipment directly affects the accuracy and reliability of the experimental data, so any potential problems must be solved before the experiment begins. After the preparation work, we will really start to enter the ore sorting experiment. When designing an ore sorting experiment, choosing the right crushing and grading equipment is a key step to ensure the success of the experiment. Crushing The selection of crushing and grading equipment needs to be based on the physical and chemical properties of the ore, production capacity and efficiency requirements, equipment durability and maintenance convenience. Selection of crushing equipment Crushing equipment mainly includes jaw crusher, hammer crusher, gyratory crusher, etc. Jaw crushers are suitable for primary crushing, especially for handling ores with higher hardness; hammer crushers are suitable for crushing softer ores. The performance of crushing equipment depends largely on its parameter settings, such as speed, discharge port width and crushing cavity type. The optimization of these parameters can improve the crushing efficiency and material passing capacity of the equipment. Selection of grading equipment Grading equipment is used to classify ground ore. Common ones include spiral classifiers and hydrocyclones. The spiral classifier uses the difference in the settling speed of particles to classify and lift the ore through the rotation of the spiral. The hydrocyclone is suitable for fine screening of fine-grained ores. It is characterized by high vibration frequency, high screening efficiency and high screening rate. Comprehensive considerations When selecting crushing and grinding equipment, in addition to the characteristics of the above equipment itself, the following factors need to be considered: Ore characteristics: hardness, brittleness, moisture content, etc. will affect the selection of equipment. Production capacity and efficiency requirements: The processing capacity of the equipment directly affects the processing speed and output of the ore. Equipment durability and maintenance cost: Equipment with good wear resistance can significantly extend its service life and reduce maintenance costs. Ease of operation: Equipment with easy operation can reduce training time and improve production efficiency. Environmental protection requirements: With the increasingly stringent environmental protection standards, the environmental protection performance of equipment has also become an important consideration for selection. After crushing and screening the ore, the next step is the phased experiment. Phase experiment We need to select different photoelectric sorting equipment according to the different characteristics of the ore. Generally speaking, for metal ores with unclear surface features, we recommend that you choose an X-ray intelligent sorting machine for experiment. The X-ray intelligent sorting machine can obtain different imaging effects through the different penetration capabilities of X-rays in ores of different densities, and sort the ore according to the imaging results. For ores with obvious color features, we can choose a ore color sorter for experiment. For other ores with obvious surface features, we can choose an AI intelligent machine for sorting experiments. In addition, for ore samples of different particle sizes, the selected machine models are also different. For customers, in choosing a suitable photoelectric sorting machine, it is mainly based on the properties of the ore itself and its own sorting requirements. After crushing and screening the ore, the X intelligent sorter and AI intelligent sorter collect images of the ore through high-definition cameras, and then use machine vision technology to process and analyze the images. After deep learning algorithms, a large amount of ore sample data is trained to establish a model for ore identification and classification. This model can self-learn and optimize, identify the color, shape, texture and other characteristics of the ore, and realize automatic identification and sorting of ore types. Before the formal sorting, the machine needs some time to process and sort the collected ore images, so we need to wait patiently. During the phased experiment of machine sorting, we need to repeat it many times under different conditions and record relevant data to verify the stability and reliability of the beneficiation effect. After the phased experiment, we need to organize and interpret the data collected during the experiment to determine the optimal beneficiation process and equipment configuration of the ore. Data analysis can be carried out using statistical methods and software tools to provide a basis for in-depth data understanding and process optimization, so as to select suitable photoelectric sorting equipment.
  • New Method for Gold Ore Sorting - Photoelectric Sorting New Method for Gold Ore Sorting - Photoelectric Sorting Aug 30, 2024
    Gold has always been a dazzling word. It is a symbol of wealth and power, and it also carries the profound connotation of culture, history and religion. At present, the main sources of gold are mining, recycling, sale and leasing by central banks and international organizations, and seabed mining. Mining has always been the most traditional and stable source of gold, accounting for about 70% of the entire gold market. Gold mines are widely distributed, and there are gold resources in many countries and regions around the world. According to the latest information, gold resources are mainly concentrated in Africa, Asia, South America, North America and Australia. Among them, Africa has the richest gold resources, and South Africa, Ghana, Senegal and other countries are the main gold production areas in Africa. Asia, especially China, Russia and India, also has a large amount of gold resources. Brazil, Peru and Colombia in South America are also important gold production areas. Canada and the United States in North America are the main gold production areas, and Australia is one of the most important gold resource countries in the world. Gold mining is a complex and technology-intensive process, involving multiple links from exploration, mining, beneficiation to smelting. Gold mining requires not only advanced equipment and technology, but also environmental protection and safety production requirements. Exploration is the first step in gold mining. The location and reserves of gold mines are determined through geological exploration technology. Preparatory work before mining includes infrastructure construction, such as building roads and setting up necessary facilities. There are two main mining methods: open-pit mining and underground mining. Open-pit mining is suitable for surface deposits, while underground mining is suitable for deeper ore bodies. During the mining process, commonly used equipment includes drilling machines, blasting equipment and mine cars. Ore dressing is to process the mined ore to extract the gold. Ore dressing processes include crushing, grinding, screening, gravity separation and flotation. Crushing and grinding are to reduce the particle size of the ore for subsequent processing; screening is to separate ores of different particle sizes; gravity separation and flotation are to separate gold and other minerals by physical and chemical methods. With the continuous advancement of science and technology, photoelectric separation has also become an important way of gold ore separation. It detects minerals through photoelectric sensors based on the optical properties of minerals, such as color, texture, gloss, shape, etc., to achieve mineral sorting. Photoelectric sorting technology is developed on the basis of traditional mineral processing technology. It has the advantages of high efficiency, environmental protection, and energy saving. The sorting equipment mainly consists of four parts. Feeding system: Through the vibrating feeder and crawler, the materials to be sorted are fed into the detection area of ​​the photoelectric system at a constant speed to ensure the stability of the sorting effect. Photoelectric system: It consists of a light source, a background plate, a sensor or an X-ray source, and a transmission plate. By collecting the comprehensive characteristics of the ore surface or the density difference, the ore is imaged in high definition, and the sensor is converted into an electrical signal to convey it to the electronic control system. Control system: Receives the electrical signal transmitted by the photoelectric system, identifies and analyzes it, and through model training and learning, intelligently identifies and compares good and bad ores, and realizes the identification and sorting of non-massive ore data. Sorting system: According to the instructions of the electronic control system, the defective products are blown into the defective product tank through the spray valve to achieve the sorting purpose. AI Ore Sorting Machine The advantage of photoelectric sorting technology for gold mines is that it can improve the efficiency and accuracy of mineral processing while reducing environmental pollution. Compared with traditional physical and chemical mineral processing, photoelectric mineral processing has lower energy consumption, and the cost of mineral processing per ton is about 1 yuan, which is much lower than the average cost of traditional methods. In addition, photoelectric mineral processing has zero pollution to the environment and is a greener way of mineral processing. Hefei Mingde Optoelectronics Technology Co., Ltd. has been focusing on the research and development, production and sales of photoelectric sorting equipment since its establishment. For gold mine sorting, the company currently has two main equipment solutions to choose from: for those gold mines with better dissociation and obvious surface characteristics of ore and impurities, the company's AI intelligent sorting machine can achieve effective sorting. For gold mines with good ores and impurity surface characteristics that are not obvious, the company has launched an X-ray intelligent sorting machine, which can combine the analysis of different densities of ore and impurities to achieve gold mine sorting. X-ray Intelligent Ore Sorting Machine Gold mines are an important natural resource, and their mining and processing have a profound impact on the national economy and the global market. With the advancement of science and technology and changes in market demand, gold mining and mineral processing technologies continue to develop and innovate to adapt to more efficient and environmentally friendly mining models. At the same time, as a metal with multiple functions, gold's position in the field of financial investment cannot be ignored. In the future, as the global economic landscape evolves, the gold mining industry and its related investment products will continue to play an important role on the international stage.
  • Market Application and Sorting of Industrial Silicon Market Application and Sorting of Industrial Silicon Aug 31, 2024
    Overview Industrial silicon, also known as metallic silicon or crystalline silicon, is an important industrial raw material. Its main component is silicon element, and the content is generally around 98%. In recent years, products containing 99.99% Si have appeared on the market. The rest of industrial silicon is mainly composed of impurities such as iron, aluminum, and calcium. Industrial silicon is divided into various specifications due to its different uses. Common grades include 553, 441, etc. These grades represent the maximum content of the main impurity elements iron, aluminum, and calcium in the product. Industrial silicon is widely used in many fields such as metallurgy, chemical industry, machinery, electrical appliances, and aviation. The chemical composition of industrial silicon mainly exists in the form of silicon element, and the content is usually above 98.7%. In addition, it also contains a small amount of impurities such as iron, aluminum, and calcium. The physical properties of industrial silicon are high hardness, high melting point, good heat resistance, and high resistivity. At the same time, it is non-conductive below 650°C and can be used as an insulating material; it begins to conduct electricity above 650°C, and its conductivity continues to increase with the increase of temperature. Global Industrial Silicon Production Pattern and Trade Flow At present, the global industrial silicon production capacity is concentrated in China, Brazil, Norway, the United States, Russia and other countries. Among them, Brazil and the United States have high-quality silicon ore resources, and Norway has abundant hydropower resources. The growth of China's industrial silicon production capacity is mainly contributed by domestic production capacity. China has an inherent production cost advantage and has been ranked first in the world for many years. China, Brazil, Norway and other countries are not only the main producers of industrial silicon, but also the main exporters. In 2021, China's industrial silicon (including 97 silicon and silicon) production accounted for 78% of the world, and Brazil (7%), Norway (6%), the United States (3%), France (3%) and other countries also have a certain output. The production of industrial silicon mainly adopts the submerged arc furnace method, which uses the arc energy between electrodes to melt the metal. It is the main process for the production of industrial silicon in China. During the production process, silica and carbonaceous reducing agent are first placed in the submerged arc furnace, and industrial silicon liquid is generated through high-temperature reduction reaction, and then block or granular industrial silicon is generated through casting, cooling, crushing and other steps. Market Application of Industrial Silicon Due to its special physical and chemical properties, industrial silicon has a wide range of applications in many fields. The following are the applications of industrial silicon in different fields: Photovoltaic industry Industrial silicon plays an important role in the photovoltaic industry. Polycrystalline silicon and monocrystalline silicon panels are the core components of solar photovoltaic power generation, and high-quality industrial silicon is an indispensable raw material in the preparation of these materials. Industrial silicon is purified through a series of processes to generate polycrystalline silicon and monocrystalline silicon for use in the photovoltaic industry and the electronics industry. Crystalline silicon cells are mainly used in solar rooftop power stations, commercial power stations and urban power stations with high land costs. They are the most technologically mature and widely used solar photovoltaic products, accounting for more than 80% of the world's photovoltaic market. Semiconductor industry In the field of semiconductor manufacturing, the high purity of industrial silicon ensures the reliability and stability of the semiconductor manufacturing process. Industrial silicon is the basic material of semiconductor chips, and the presence of any impurities will affect the quality and performance of the chips. Industrial silicon can produce high-quality silicon wafers through melting and crystal growth technology, which are used to manufacture electronic devices such as transistors and integrated circuits. Aluminum alloy manufacturing Industrial silicon plays a key role in the production process of aluminum alloys. As an alloying element, industrial silicon can adjust the properties of aluminum alloys by controlling the amount of addition, such as improving hardness, strength and wear resistance. In addition, industrial silicon can also improve the heat resistance and corrosion resistance of aluminum alloys, making them perform better in high temperature and corrosive environments. Aerospace Industrial silicon is used to manufacture high-performance structural materials in the aerospace field due to its characteristics such as light weight, high strength and high temperature stability. For example, in the outer shell material of spacecraft, industrial silicon can provide excellent resistance to thermal stress and can also resist high-speed wear. Industrial silicon can also be prepared into high-strength spacecraft parts, such as engine turbine blades. Chemical industry In the chemical industry, industrial silicon can be used as key raw materials such as catalysts, fillers and fire retardants. For example, catalysts can reduce the activation energy of the reaction, increase the reaction rate and selectivity; fillers can increase the contact area of ​​the reactants and improve the reaction efficiency; fire retardants can improve the fire resistance of the material and reduce the occurrence of fire accidents. New energy vehicles In the field of new energy vehicles, industrial silicon is widely used in the manufacture of key components such as batteries, motors and electronic controls. The high energy density and stability of industrial silicon make it an ideal material for new energy vehicle batteries. Construction and electronics Industrial silicon is also used in building sealing materials and waterproof materials, as well as in the field of electronics and electrical insulation. For example, silicone rubber has good high temperature resistance and is used to make medical supplies, high temperature resistant gaskets, etc. Sorting of Industrial Silicon As an important industrial raw material, the sorting technology of industrial silicon plays a vital role in ensuring product quality and improving resource utilization. The sorting technology of industrial silicon mainly includes two categories: physical methods and chemical methods. Physical methods are mainly based on the physical properties of minerals, such as density, conductivity, magnetism, etc. for sorting. Chemical methods use the differences in the chemical properties of minerals for separation. In practical applications, multiple methods are often combined to achieve the best sorting effect. Physical sorting technology Physical sorting technology mainly includes heavy medium beneficiation, flotation, magnetic separation and electrostatic separation. Heavy medium beneficiation uses the difference in mineral density to achieve separation; flotation relies on the chemical properties of the mineral surface for separation; magnetic separation uses the difference in the magnetic properties of minerals for sorting; and electrostatic separation uses the difference in the electrical properties of minerals for sorting. These methods have their own advantages and disadvantages and are suitable for different types of ores and sorting requirements. Chemical sorting technology Chemical sorting technology includes acid-base leaching, solvent extraction and other methods. These methods are mainly used to process ores that are difficult to effectively sort by physical methods, especially when the ore contains fine particles or film-like impurities that are difficult to separate by physical methods. New sorting technology In recent years, with the advancement of science and technology, new sorting technologies have gradually been applied to the sorting process of industrial silicon. For example, artificial intelligence sorting technology achieves higher-precision sorting by identifying the multi-dimensional three-dimensional characteristics of silicon slag and establishing a model. In addition, color sorting technology is also used in the purification of silica raw materials. By distinguishing the difference in color, sorting is carried out, which effectively improves the purity of silica. Since its establishment in 2014, Hefei Mingde Technology Co., Ltd. has been a high-tech enterprise dedicated to the research and development, design, production, sales and service of ore sorting equipment. The current main products include ore sorting machine, AI intelligent sorting machine, X-ray intelligent sorting machine, foreign body removal robot and mining automation production line, etc. AI Ore Sorting Machine Among them, the AI ​​intelligent sorting machine produced by the company can accurately extract the surface features of industrial silicon, conduct deep learning to form a model, and match the industrial silicon with the existing model in the subsequent sorting, so as to achieve accurate sorting. At present, the machine has been put into the actual production of industrial silicon and has received very good market response. Heavy Duty AI Ore Sorting Machine As an important industrial raw material, industrial silicon plays an indispensable role in modern industry. From its production process to application field, to market status and development trend, industrial silicon has demonstrated its unique value and broad development prospects. With the continuous advancement of technology and changes in market demand, the industrial silicon industry will continue to maintain a rapid development trend and make greater contributions to the development of human society.

dejar un mensaje

dejar un mensaje
Si está interesado en nuestros productos y desea conocer más detalles, deje un mensaje aquí, le responderemos tan pronto como podamos.
enviar

Hogar

Productos

whatsApp

contacto