Banner de la página interior
Máquina clasificadora inteligente de IA
  • ¿Qué es un clasificador de minerales? Presentación de las tecnologías de clasificación avanzadas de la minería ¿Qué es un clasificador de minerales? Presentación de las tecnologías de clasificación avanzadas de la minería Nov 11, 2023
    Un clasificador de minerales Es una máquina especializada que se utiliza en la industria minera para separar minerales valiosos de las impurezas. Utilizando técnicas como sensores, cámaras y algoritmos de clasificación automatizados, identifica y separa de manera eficiente diferentes tipos de minerales en función de sus propiedades físicas y químicas. Esta tecnología mejora significativamente la eficiencia del proceso minero al reducir la cantidad de impurezas que necesitan procesamiento y aumentar la concentración de mineral valioso. Los clasificadores de minerales pueden garantizar una mayor productividad y rentabilidad en la industria minera.   Tipos de clasificadores de minerales   1. Clasificador de minerales por color Utiliza tecnología de reconocimiento de color para distinguir entre diferentes minerales en función de sus propiedades de color. Este clasificador es eficaz para identificar y separar rápidamente partículas de mineral. 2. Máquina clasificadora inteligente de IA Aprovecha el poder de la inteligencia artificial para analizar y categorizar minerales en función de parámetros predefinidos. Esta tecnología de vanguardia mejora la precisión y eficiencia de la clasificación. 3. Clasificador inteligente de rayos X  Emplea tecnología de rayos X para penetrar y analizar partículas de mineral. Este clasificador es particularmente útil para identificar y separar minerales con distintas características de absorción de rayos X. 4. Clasificador de arena mineral Especializada para clasificar arenas minerales, esta máquina separa eficientemente minerales valiosos de los desechos circundantes en función de sus propiedades físicas únicas.   5. Clasificador de rayos ultravioleta Utiliza rayos ultravioleta para detectar y clasificar partículas de mineral. Este clasificador es eficaz para identificar minerales que exhiben interacciones específicas con la luz ultravioleta.   6. Clasificador de infrarrojos Funciona analizando el espectro infrarrojo de las partículas de mineral, lo que permite la separación de minerales valiosos de los desechos en función de sus firmas infrarrojas únicas.   Principio de funcionamiento del clasificador óptico de minerales Iluminación de materiales Las partículas de mineral se iluminan utilizando diversas fuentes de luz, como luz visible, rayos X, rayos ultravioleta o luz infrarroja.   Sensores ópticos Sensores especializados captan la luz reflejada o transmitida de las partículas iluminadas.   Análisis espectral El sistema óptico analiza el espectro de luz que interactúa con cada partícula, identificando patrones espectrales distintivos asociados con diferentes minerales.   Procesamiento algorítmico Algoritmos avanzados procesan los datos ópticos recopilados, tomando decisiones rápidas sobre la naturaleza de cada partícula, distinguiendo entre materiales valiosos y de desecho.   Mecanismo de clasificación  Según el análisis, se activa un mecanismo de clasificación para separar el mineral valioso del material de desecho, garantizando un procesamiento eficiente.   Operación en tiempo real Todo el proceso ocurre en tiempo real, lo que permite una separación rápida y precisa de minerales valiosos de los que no lo son.   Ventajas de la tecnología de clasificación de minerales   1. Mayor eficiencia Al separar las rocas valiosas de los desechos antes de ingresar al molino, los clasificadores de minerales mejoran la eficiencia general de la molienda, reduciendo la necesidad de una molienda que consume mucha energía.   2. Beneficios ambientales La reducción de la generación de desechos, incluidos los relaves, minimiza el impacto ambiental de las operaciones mineras. Un menor consumo de agua contribuye a prácticas mineras sostenibles.   3. Calidad mejorada del producto  La clasificación de minerales elimina rocas contaminadas o de baja ley, lo que da como resultado una calidad promedio más alta del mineral y mayores rendimientos de metales valiosos en el producto final.   4. Ahorro de costos La reducción de los costos de molienda se logra procesando una ley de mineral promedio más alta y menos material de desecho, lo que genera ahorros significativos para las empresas mineras.   5. Mayor utilización de recursos La clasificación de minerales permite la extracción de metales valiosos de depósitos de minerales que antes no eran rentables, lo que mejora la utilización de recursos y la producción general.
  • ¿Qué es la clasificación fotoeléctrica de minerales? ¿Qué es la clasificación fotoeléctrica de minerales? May 27, 2024
    La clasificación fotoeléctrica de minerales es una tecnología avanzada de clasificación de minerales. Utiliza sensores fotoeléctricos para detectar e identificar minerales basándose en las propiedades fotoeléctricas de los minerales para lograr una clasificación eficaz de los minerales. Esta tecnología imita la acción de la selección manual y mejora en gran medida la eficiencia y precisión del procesamiento de minerales mediante una combinación de maquinaria y electricidad.Durante el proceso de clasificación fotoeléctrica del mineral, el sensor fotoeléctrico emite un haz de luz al mineral. Los minerales absorben la energía de la luz y la reflejan. Los diferentes tipos de minerales tienen diferentes características espectrales de absorción y reflexión debido a diferencias en sus estructuras y composiciones internas. Los sensores fotoeléctricos pueden identificar minerales con precisión al capturar estas características espectrales de reflexión.La tecnología de separación fotoeléctrica de minerales se usa ampliamente en el proceso de separación de varios minerales, especialmente en la selección primaria de minerales tipo veta de cuarzo pegmatita. Puede reemplazar parcialmente el método tradicional de selección manual, reducir la intensidad de la mano de obra y mejorar la eficiencia de la producción. Además, la tecnología de separación fotoeléctrica de minerales también se utiliza ampliamente en escenarios como el tratamiento previo a la eliminación de residuos, el enriquecimiento de minerales de baja ley y la clasificación de minerales asociados de múltiples tipos de minerales.Pre-disposicionesEn g El tratamiento de residuos es una de las aplicaciones importantes de la tecnología de separación fotoeléctrica de minerales. En el proceso de extracción y procesamiento de minerales, a menudo hay grandes cantidades de ganga y mineral de baja ley. Mediante la tecnología de separación fotoeléctrica, estos minerales inútiles o de bajo valor se pueden separar de manera efectiva, reduciendo así la cantidad de roca estéril en procesos de tratamiento posteriores y reduciendo el costo general del procesamiento de minerales.El enriquecimiento de minerales de baja ley es otra área de aplicación importante. Muchos minerales no pueden cumplir con los requisitos de una extracción económica debido a su baja ley. A través de la tecnología de separación fotoeléctrica de minerales, los componentes útiles de estos minerales de baja ley se pueden enriquecer de manera efectiva y se puede mejorar la ley de los minerales, haciéndolos económicamente valiosos para la minería.El enriquecimiento de minerales de baja ley es otra área de aplicación importante. Muchos minerales no pueden cumplir con los requisitos de una extracción económica debido a su baja ley. A través de la tecnología de separación fotoeléctrica de minerales, los componentes útiles de estos minerales de baja ley se pueden enriquecer de manera efectiva y se puede mejorar la ley de los minerales, haciéndolos económicamente valiosos para la minería.La clasificación de minerales asociados con múltiples minerales también es un escenario de aplicación importante de la tecnología de separación fotoeléctrica de minerales. En minerales asociados con múltiples tipos de minerales, las diferencias de propiedades entre diferentes minerales pueden aumentar la dificultad del procesamiento del mineral. Mediante la tecnología de separación fotoeléctrica, se pueden separar eficazmente diferentes minerales, lo que reduce la dificultad del procesamiento de minerales y mejora la eficiencia del procesamiento de minerales.Después de años de ardua investigación, Mingde Optoelectronics Technology Co., Ltd. no solo desarrolló un clasificador de color fotoeléctrico tradicional, sino que también lanzó un clasificador fotoeléctrico de IA avanzado. La máquina clasificadora inteligente MIINGDE AI toma la delantera en el uso de medios de inteligencia artificial como la tecnología neuronal convolucional profunda. red (CNN) para analizar y procesar imágenes de materiales en el campo de la clasificación fotoeléctrica de luz visible, y extrae automáticamente características multidimensionales de los materiales para establecer una base de datos a través de conexión local CNN, uso compartido de peso, núcleo multiconvolucional y otros métodos en el proceso de capacitación, y el El efecto de clasificación es mucho mejor que el de la clasificación fotoeléctrica tradicional.La tecnología de separación fotoeléctrica de minerales juega un papel importante en el campo del procesamiento de minerales debido a su alta eficiencia y precisión. Con el avance continuo de la ciencia y la tecnología y la innovación continua de la tecnología fotoeléctrica, se cree que la tecnología de separación fotoeléctrica de minerales se utilizará y desarrollará más ampliamente en el futuro.
  • Utilización integral del carbón y la ganga del carbón. Utilización integral del carbón y la ganga del carbón. Aug 03, 2024
    El carbón y la ganga son dos sustancias diferentes que se producen durante la extracción y el procesamiento del carbón. El carbón es un combustible fósil que está compuesto principalmente por elementos como carbono, hidrógeno, oxígeno, nitrógeno, azufre y fósforo, y tiene una alta densidad energética y poder calorífico de combustión. El carbón suele ser de color negro, tiene una textura relativamente compacta y contiene menos impurezas. Por el contrario, la ganga es un residuo sólido producido durante la extracción y selección del carbón, que contiene un menor contenido de carbono y un mayor contenido de cenizas. Suele ser de color gris o gris oscuro y contiene más impurezas. La densidad de la ganga es menor que la del carbón, por lo que pesa más en el mismo volumen. Además, la dureza de la ganga también es mayor que la del carbón y no es fácil romperla manualmente.La ganga, por otro lado, a menudo se consideraba un elemento de eliminación de desechos en el pasado debido a su menor valor energético y su mayor potencial de contaminación ambiental. Sin embargo, con la mejora de la utilización integral de los recursos y la conciencia sobre la protección del medio ambiente, se ha desarrollado la tecnología de utilización integral de la ganga y ha aumentado gradualmente su aplicación en la producción de materiales de construcción, el relleno de cabras, la recuperación de tierras y la producción de productos químicos.Tomando como ejemplo el campo de los materiales de construcción, la ganga de carbón tiene las siguientes aplicaciones principales:Producción de cemento: la ganga de carbón se puede utilizar como materia prima para la producción de cemento de silicato ordinario, cemento especial y cemento sin clinker, y puede reemplazar parcial o totalmente la arcilla para preparar materias primas de cemento.Producción de ladrillos sinterizados: los ladrillos sinterizados de ganga de carbón son de buena calidad y color uniforme, y son un material de construcción de uso común.Producción de agregado liviano: El agregado liviano es un agregado poroso que se utiliza para reducir la densidad relativa del concreto. Para producir dichos materiales se puede utilizar ganga de carbón.Producción de amianto de ganga de carbón: El amianto de ganga de carbón elaborado a partir de ganga de carbón y cal como materia prima y fundido a alta temperatura es un material de construcción.Producción de bloques: la ganga de carbón también se puede utilizar para producir materiales de construcción como bloques.Producción de otros materiales de construcción: Según la composición mineral de la ganga de carbón, se puede utilizar como materia prima silícea o como materia prima de aluminio, y se utiliza en la producción de muchos materiales de construcción cerámicos (porcelana) sinterizados.Producción de productos químicos: La ganga se puede utilizar para producir productos químicos como cloruro de aluminio cristalino, vidrio soluble y sulfato de amonio.Relleno y recuperación: La ganga se puede utilizar para rellenar áreas de hundimiento de minas de carbón y minas a cielo abierto para recuperación de tierras.Además, la ganga tiene las siguientes aplicaciones prácticas:Conversión de ganga en fertilizante orgánico: Mediante un tratamiento biotecnológico específico, la ganga se puede convertir en fertilizante orgánico biológico para mejorar la productividad de los ecosistemas del suelo. Esta tecnología no solo permite aprovechar los recursos de la ganga, sino que también ayuda a mejorar la calidad del suelo y promover el desarrollo agrícola sostenible.Utilización de alto valor de la ganga: después de la molienda, la fabricación de pulpa, la clasificación y otros tratamientos de proceso, la ganga se puede utilizar para producir productos de alto valor agregado, como catalizadores, pigmentos y cargas. Estos productos se utilizan ampliamente en muchos campos, como plásticos, caucho y revestimientos, logrando la utilización de recursos y el reciclaje de ganga.Tecnología de llenado de lechada de aislamiento de sobrecarga de ganga: se trata de una tecnología que inyecta ganga como material de relleno en la zona de separación de sobrecarga a través de perforación del suelo, lo que previene y ralentiza eficazmente el hundimiento del terreno. Esta tecnología resuelve fundamentalmente el problema del tratamiento de ganga en las minas de carbón, ahorra costos de tratamiento y proporciona una nueva solución para la eliminación de ganga.Para mejorar la eficiencia integral de las ganancias del carbón y la ganga, la separación del carbón y la ganga es particularmente importante como un paso importante en el proceso de procesamiento del carbón.Los siguientes son algunos métodos actuales para separar carbón y ganga:1. Sistema de separación de ganga con criba vibratoria: Al establecer un sistema de separación de ganga con criba vibratoria en la cinta centralizada subterránea, se logra una separación efectiva del carbón y la ganga. Este sistema puede realizar la carga y elevación directa de ganga, reducir la elevación del eje principal y el lavado de ganga en la planta de lavado de carbón, reducir el contenido de cenizas del carbón lavado y mejorar la tasa de recuperación del carbón crudo.El principio de funcionamiento de este sistema se basa en la mecánica de vibración y principios de cribado. En este proceso, la criba vibratoria es impulsada por un motor para hacer que el cuerpo de la criba vibre a alta frecuencia y el material salta sobre la superficie de la criba. Debido a las diferentes propiedades físicas del carbón y la ganga, sus estados de movimiento en la superficie de la criba vibratoria también son diferentes, lo que resulta en la separación efectiva de los dos.Específicamente, cuando la superficie de la criba vibratoria vibra, grandes partículas de material serán arrojadas por encima de la superficie de la criba debido a la inercia, mientras que pequeñas partículas de material caerán debajo a través de la criba. De esta forma se separan materiales de diferentes tamaños de partículas. El diseño de la criba vibratoria suele tener en cuenta las diferencias en las características del carbón y la ganga, incluida su densidad, humedad y forma, para garantizar una clasificación eficiente.El sistema de clasificación de gangas con criba vibratoria se compone principalmente de una caja de criba, una criba, un vibrador, un resorte amortiguador de vibraciones y otros componentes. Hay varias capas de malla dentro de la caja de malla y cada capa de malla corresponde a diferentes requisitos de tamaño de partícula. El vibrador genera fuerza de vibración, lo que hace que la caja de la criba y la criba vibren a alta frecuencia, logrando así la separación del material. El resorte amortiguador de vibraciones se utiliza para absorber la vibración generada por la criba vibratoria durante el funcionamiento y reducir la transmisión de vibración al suelo u otros equipos.El proceso de operación generalmente incluye tres pasos: alimentación, cribado y descarga. Primero, la mezcla de carbón crudo y ganga se introduce en el puerto de alimentación de la criba vibratoria. Luego, la criba vibratoria comienza a funcionar y el material se criba en la superficie de la criba vibratoria. Finalmente, el carbón cribado y la ganga se descargan desde ambos lados de la criba respectivamente para completar el proceso de clasificación.En aplicaciones prácticas, la criba vibratoria sistema de clasificación de gangas se puede optimizar y mejorar de acuerdo con las condiciones específicas de diferentes minas de carbón para mejorar la eficiencia de clasificación y reducir el consumo de energía. Por ejemplo, la frecuencia de vibración y la amplitud de la criba vibratoria se pueden ajustar para adaptarse a diferentes características del material, o se puede mejorar la precisión del cribado mejorando el diseño de la criba. Además, la introducción de sistemas de control inteligentes puede mejorar aún más la automatización y la estabilidad del sistema.2. Sistema de clasificación de ganga basado en rayos X y visión artificial: utilice tecnología de rayos X y visión artificial para identificar el carbón y la ganga, calcular el valor del espesor del carbón y la ganga mediante un algoritmo de procesamiento de imágenes y fusionar el espesor del carbón y la ganga identificados. mediante imágenes visuales con imágenes de atenuación de rayos X para obtener información de decisión de reconocimiento. La aplicación de la tecnología de rayos X y visión artificial en la clasificación de ganga de carbón implica principalmente los siguientes pasos:Uso del sistema de imágenes: utilice un sistema de imágenes de rayos X para escanear el carbón y la ganga de carbón para obtener la estructura interna y la información de composición del material. Esta información generalmente se manifiesta cuando diferentes materiales absorben rayos X en diferentes grados, formando así contraste en las imágenes.Reconocimiento y análisis de imágenes: mediante tecnología de visión artificial, se procesan y analizan las imágenes obtenidas por el sistema de imágenes de rayos X. Los algoritmos de aprendizaje profundo se utilizan para entrenar modelos para identificar automáticamente las características del carbón y la ganga de carbón, como el color, la densidad, la forma, la textura, etc.Clasificación automatizada: después de identificar el carbón y la ganga de carbón, el sistema de control guiará el actuador, como un viento de alta presión o un brazo robótico, para separar la ganga del carbón. Este proceso puede lograr una clasificación de alta eficiencia y alta precisión, reducir los costos de mano de obra y mejorar la calidad de la clasificación.Sistema inteligente: los sistemas modernos de clasificación de ganga no solo dependen de equipos de hardware, sino que también integran análisis de datos y algoritmos de inteligencia artificial, de modo que el sistema tiene capacidades de autoaprendizaje, puede ajustar la estrategia de clasificación de acuerdo con las diferentes características de calidad del carbón y condiciones ambientales, y realizar una operación desatendida.La combinación de estas tecnologías representa el nivel avanzado en el campo de la clasificación del carbón, lo que ayuda a mejorar la recuperación de recursos y reducir la contaminación ambiental.3. Sistema de clasificación fotoeléctrico: La tecnología de clasificación fotoeléctrica de ganga es un método moderno de clasificación de carbón y ganga mediante sensores fotoeléctricos y tecnología de procesamiento de imágenes. Esta tecnología puede lograr una identificación rápida y precisa del carbón y la ganga, mejorando así la calidad del carbón y la tasa de utilización integral de los recursos. Los sistemas de clasificación fotoeléctricos suelen incluir componentes como fuentes de luz, detectores, unidades de procesamiento de imágenes y sistemas de control. Al escanear los materiales en la cinta transportadora, el sistema puede detectar las diferencias en las características espectrales de diferentes sustancias y clasificarlas en consecuencia. Las últimas investigaciones y aplicaciones muestran que la tecnología de clasificación fotoeléctrica de ganga se está desarrollando hacia la inteligencia y la alta eficiencia. Por ejemplo, un estudio propuso un sistema inteligente de clasificación de gangas basado en el aprendizaje por refuerzo profundo, que puede lograr más del 95% de precisión en la identificación de gangas y más del 90% de eficiencia de clasificación. Además, existen estudios sobre las tecnologías comunes clave de los robots de clasificación inteligentes de ganga de brazos múltiples, que han logrado el agarre estable de la ganga dinámica transmitida a alta velocidad por el manipulador, mejorando la eficiencia de clasificación y la capacidad de trabajo colaborativo del sistema.La ventaja de la tecnología de clasificación optoelectrónica de la ganga es que puede realizar una clasificación sin contacto, reducir el daño a los materiales y reducir el polvo y la contaminación acústica. además, el sistema de clasificación inteligente Puede autoaprender y optimizar la estrategia de clasificación para mejorar la precisión y eficiencia de la clasificación. La aplicación de estas tecnologías ayuda a lograr una utilización eficiente de los recursos de carbón y la protección del medio ambiente, lo que está en consonancia con la tendencia de desarrollo de la construcción de minas ecológicas.Además, la aplicación de tecnología de clasificación optoelectrónica también puede reducir la tasa de fallas de los equipos, reducir los costos de gestión, optimizar el flujo del proceso y mejorar la tasa de recuperación de carbón limpio, lo que se refleja directamente en la mejora de la eficiencia de la producción. La combinación de iluminación inteligente y plataforma de gestión de posicionamiento del personal mejora aún más el nivel de inteligencia de las plantas de preparación de carbón y mejora los estándares de producción segura.El Máquina clasificadora inteligente AI lanzado por Tecnología optoelectrónica Co., Ltd de Anhui Mingde. utiliza tecnología de aprendizaje profundo y visión artificial para identificar y clasificar automáticamente la ganga de carbón. Esta tecnología puede mejorar significativamente la eficiencia de clasificación, reducir los costos laborales y reducir la contaminación ambiental.
  • How to Choose An Ore Color Sorter? How to Choose An Ore Color Sorter? Aug 10, 2024
    The ore color sorter uses the principle of photoelectric sorting and the difference in the optical properties of the material for fine sorting. It can process a large amount of material in a short time, and has high sorting accuracy, which helps to improve the grade of the ore. CCD Sensor Based Ore Color Sorter   The color sorting process does not require the addition of chemical agents, which reduces environmental pollution and energy consumption, and meets the environmental protection requirements of modern mining. The ore color sorter with a high degree of intelligence can adapt to the changing properties of the ore, realize remote control and automatic operation, and reduce labor costs and downtime. With the development of science and technology, the technical performance of ore color sorters has been continuously improved, and more sensing technologies have been integrated, such as near-infrared spectroscopy analysis and thermal imaging, to achieve a more comprehensive and in-depth ore quality judgment. Since the ore color sorter has so many advantages, how should we choose a suitable color sorter? Generally speaking, when choosing an ore color sorter, you need to consider the following key factors: Determine the needs: Determine the appropriate type of color sorter based on your production requirements, sorting effect, applicable particle size range, sorting type, equipment stability, service life and budget. Technical performance: Choose a color sorter with advanced technology and stable performance, including the stability of the optical system, the advancement of the image processing algorithm, and the durability of the equipment. Brand and manufacturer reputation: Consider the brand's market reputation and after-sales service system, and choose manufacturers that can provide long-term technical support and quick response services. Equipment adaptability: Choose a color sorter that can adapt to different working environments and material characteristics, so as to maintain high efficiency and high precision under changing production conditions. Cost-effectiveness: Under the premise of meeting technical and performance requirements, choose a cost-effective color sorter to ensure the return on investment. Field investigation: If possible, go to the manufacturer's or existing users' site for an inspection and see the actual working effect of the color sorter with your own eyes, which will help verify the performance of the equipment and the manufacturer's service quality. Customization capability: Consider whether the manufacturer can provide customized services to meet specific material sorting needs.   Color Sorter After considering these factors, we will begin to understand the categories of ore color sorters. The main classification of ore color sorters can be divided according to different technical and application characteristics. The following are some common classification methods: Classification by technology: Traditional photoelectric color sorter: Use basic photoelectric sensors for color detection and sorting. CCD technology color sorter: Use charge coupled device (CCD) as an image sensor to provide higher resolution color recognition. Infrared technology color sorter: Use infrared to detect the difference in thermal radiation of ore for sorting. X-ray color sorter: Use X-rays to penetrate the ore and sort according to density differences. Classification by light source: LED light source color sorter: Use light-emitting diodes (LEDs) as more energy-saving and long-life light sources. Microwave light source color sorter: Use microwaves to excite ore to emit light for special types of color sorting. X-ray color sorter: Use X-rays as a light source, suitable for sorting occasions that require penetration. Classification by rack: Waterfall: The material flow is similar to a waterfall, suitable for continuous operation. Crawler type: the material moves on the crawler, which is suitable for sorting a variety of materials. Classification by material: Special color sorter: a color sorter designed for a specific type of ore or material, such as rice color sorter, grain color sorter, tea color sorter, etc.   Color Sorter These classifications reflect the diversity of ore color sorters in different technologies and application scenarios. We can choose the appropriate color sorter model according to the actual ore characteristics and processing requirements. The ore color sorter independently developed by Hefei Mingde Optoelectronics Technology Co., Ltd. has the following advantages: 1. The independently developed software system and closed whole machine structure, the main internal components are all imported components, which can adapt to the requirements of high dust, high pollution, high corrosion and other environments in the industrial and mining industries, with a wider range of applications and longer life. 2. The 32-bit true color image processing method is adopted, and mathematical morphology is applied based on the HSI color space to achieve better sorting effect and improve the flexibility and sorting ability of the color sorter operation. 3. High-precision full-color linear array CCD sensor technology can detect subtle color differences of about 0.02mm; according to the different characteristics of the ore, different processing methods are used to ensure the accurate identification of ore and other selected materials. 4. The device has high output and high precision. The output of some models has exceeded 40 tons/hour, which is 4-5 times that of similar manufacturers in China. It is suitable for large and medium-sized mining companies to meet the requirements of high output and high precision in mineral processing. 5. The range of selectable materials is large, and the size of the sorted materials ranges from 16 mesh to 4 cm, which avoids the repeated crushing adopted by users for the use of color sorting machines, reduces breakage and reduces resource waste. 6. Double-layer crawler flexible material conveying, higher color sorting accuracy and low carry-out ratio. 7. The first manufacturer to develop and launch large and small particles at the same time, one color sorter can meet the requirements of simultaneous sorting of materials with large specifications. 8. The vibrating feeding part and the main part of the equipment adopt a split structure to avoid the influence of vibration generated during the feeding process on the host, making the equipment run more stable. 9. Unique modular design, automatic dust removal and automatic spraying combined with self-maintenance function ensures the continuous and long-term working state of the equipment. 10. The parts of the machine body that contact the material are equipped with a protective layer, which has the characteristics of wear resistance, corrosion resistance, and easy replacement, ensuring the long service life of the whole machine. At the same time, according to customer needs, the company can provide specific machine customization services. In addition, through years of dedicated research, the company has introduced AI technology and big data technology in the field of photoelectric sorting. The self-developed AI intelligent sorting machine has higher sorting accuracy and can sort more types of ores. In addition, the after-sales service provided by the company is also very complete. After the customer purchases the machine, we will arrange special technicians to install and debug locally, provide a full set of operation training for customer employees, ensure the delivery and normal use of the machine, and let customers rest assured. In general, when choosing a color sorter, paying attention to the strength and after-sales service of the color sorter manufacturer is crucial to ensure the efficient operation of the equipment and return on investment. When choosing a color sorter, priority should be given to manufacturers with a good market reputation, strong technical background and a complete after-sales service system.
  • Industrial Use and Sorting of Gypsum Industrial Use and Sorting of Gypsum Aug 17, 2024
    Gypsum is a non-metallic mineral with calcium sulfate as the main component. It is usually white or colorless transparent crystals and has a wide range of application value. The formation of gypsum is closely related to geological action and is usually formed in a sedimentary environment or hydrothermal activity. In a sedimentary environment, gypsum can be precipitated from calcium sulfate in seawater or lake water; in hydrothermal activity, gypsum can be formed by cooling and crystallizing hydrothermal fluid containing calcium sulfate underground. Formation process According to the genesis and mineral composition of gypsum, it can be divided into sedimentary gypsum, hydrothermal gypsum and replacement gypsum. Among them, sedimentary gypsum is the most common type, with layered, quasi-layered and lens-shaped forms. Gypsum is widely distributed around the world, especially in Asia, Europe and North America, where reserves and production are relatively concentrated. Asia is one of the main distribution areas of gypsum, especially China, Iran and Thailand, which have more gypsum resources. China has abundant gypsum resources, which are distributed in many provinces across the country. Among them, Shandong Province has particularly outstanding gypsum ore reserves, accounting for 65% of the country's total reserves. Europe is also an important distribution area for gypsum mines. France, Germany, Spain and other countries have a large number of gypsum mine resources. Among these countries, France's gypsum mine production ranks among the top in Europe. North America, especially the United States, is one of the world's largest gypsum producers. The gypsum deposits in the United States are distributed in 22 states, with a total of 69 mines, and the largest production area is Fort Dodge, Iowa. In addition to the above-mentioned regions, countries such as Australia, India and the United Kingdom also have a certain scale of gypsum mine resources. The main component of gypsum ore is calcium sulfate (CaSO4), which usually exists in the form of dihydrate, that is, gypsum (CaSO4·2H2O). Gypsum belongs to the orthorhombic crystal system, and the crystals are plate-shaped or fibrous. The chemical properties of gypsum are stable and it is not easy to react chemically with other substances. However, at high temperatures, gypsum can react with alumina to form calcium aluminum silicate and other compounds. In addition, gypsum can react with acidic substances such as hydrochloric acid to produce sulfur dioxide gas and water. The solubility of gypsum decreases with increasing temperature. It has a low solubility in water, but can be dissolved by acids, ammonium salts, sodium thiosulfate and glycerol. When gypsum is heated at different temperatures, there are three stages of expelling crystal water: 105~180℃, first one water molecule is expelled, and then half of the water molecule is immediately expelled, turning into calcined gypsum, also known as gypsum or semi-hydrated gypsum. 200~220℃, the remaining half of the water molecule is expelled and turned into type III anhydrite. At about 350℃, it turns into type II gypsum Ca[SO4]. At 1120℃, it further turns into type I anhydrite. Melting temperature is 1450℃. The microporous structure and heating dehydration of gypsum and its products make it have excellent sound insulation, heat insulation and fire resistance. As a multifunctional mineral, gypsum is widely used in construction, medicine, agriculture, chemical industry and many other fields. Gypsum plays an important role in the medical, construction, sculpture and other industries with its excellent properties, such as good plasticity, stability, high thermal stability and chemical stability. In the field of construction, gypsum is mainly used for indoor partitions, ceilings, wall materials, etc. Gypsum board is widely used because of its light weight, high strength and easy processing. It can be used as a partition wall, interior wall material, and can also be used to make furniture. In addition, gypsum blocks are also a lightweight and environmentally friendly building material suitable for partition walls and interior walls. In the medical field, gypsum is used to make plaster bandages, fixtures, etc. The fast coagulation and hardening and fast strength growth of gypsum make it an ideal material for post-fracture fixation. In the chemical industry, gypsum can be used as a raw material for the production of sulfuric acid and cement, and can also be used as a quick-acting nitrogen fertilizer in fertilizer production. In addition, gypsum can also be used as a chemical filler in the industrial production of plastics, rubber, coatings, etc. In the agricultural field, medium gypsum can be used as a soil conditioner to adjust the pH of the soil and improve the fertility of the soil. Gypsum is also used in the field of sculpture, and artists use the plasticity of gypsum to create various works of art. In food processing, gypsum powder can be used as a food additive for tofu making, tablet production, etc. With the advancement of science and technology and in-depth research on the properties of gypsum, the application field of gypsum is still expanding. It is particularly noteworthy that as a renewable resource, the use of gypsum in building materials increasingly emphasizes environmental protection and sustainability. For example, industrial by-product gypsum such as desulfurized gypsum and phosphogypsum are reused in building materials, which not only reduces the generation of waste, but also promotes the recycling of resources. There are two main methods of mining gypsum mines: open-pit mining and underground mining. Open-pit mining is suitable for shallow and large-scale deposits. The ore is mined by stripping the covering and mining operations. Underground mining is suitable for deep and small-scale deposits. The ore is mined by opening up tunnels and mining operations. The processing of gypsum mines mainly includes crushing, beneficiation, grinding, calcination and other processes. Crushing is to break the raw ore into small pieces. Crusher such as jaw crusher is used to break the ore into small pieces for subsequent processing. The sorting process of gypsum ore includes many methods: Manual sorting: suitable for small-scale and low-production mining enterprises. Workers sort according to the color and shape of the ore. Heavy medium separation: sorting according to the density difference between the ore particles, suitable for the sorting of coarse-grained gypsum ore. Flotation method: sorting by using the difference in physical and chemical properties between gypsum ore and impurities. By adding flotation agent, gypsum ore floats to the surface of the slurry under the action of bubbles and is separated from impurities. Photoelectric separation: sorting by using the difference in optical properties between ore and impurities. Useful ore and waste rock are separated by photoelectric separator. This method has the advantages of high efficiency and precision, and is suitable for large-scale and high-precision occasions. CCD Sensor Based Ore Color Sorting Machine Mingde Optoelectronics Co., Ltd. was established in 2014. For more than 10 years, it has been professionally developing, designing, manufacturing and selling intelligent sorting equipment for mining. The ore color sorters and artificial intelligence sorters it produces can accurately sort gypsum ore. AI Sorting Machine Among them, the AI ore sorter introduces artificial intelligence technology and big data technology in the field of optoelectronics. It accurately extracts the surface features of ore and impurities such as texture, gloss, shape, color, etc., and forms a model through deep learning. In the subsequent sorting process, the sorted ore is compared and identified, instructions are issued, and pneumatic force is used for precise separation. Practice has proved that the sorting effect of AI intelligent sorting machine is far better than that of traditional optoelectronic ore sorting machine. Heavy Duty AI Ore Sorting Machine Grinding is a step to further reduce the particle size of gypsum to meet the needs of subsequent processing or application. It is usually carried out using equipment such as ball mills. Calcination is to remove moisture and impurities in gypsum and improve its purity and stability. The calcination process includes dry and wet methods. The appropriate process can be selected according to different needs and product requirements. With the advancement of science and technology, especially the development of optoelectronic mineral processing technology, the sorting efficiency and accuracy of gypsum ore have been significantly improved. As a versatile building material, gypsum plays an indispensable role in many fields of modern society. From construction to medicine, to chemical industry and agriculture, the application of gypsum shows its diversity and practicality. With the deepening of gypsum research, the application of gypsum may be more extensive in the future, and it will also pay more attention to environmental protection and sustainability.
  • Industrial Application and Sorting Method of Brucite Industrial Application and Sorting Method of Brucite Aug 20, 2024
    I. Overview Today we will learn about brucite. Brucite is an important non-metallic mineral, belonging to the hydroxide ore. Its main component is magnesium hydroxide (Mg(OH)2), which is one of the minerals with a high magnesium content in nature. II. Morphology and Characteristics Brucite is usually a flake or fibrous aggregate, mostly white or light green, colorless and transparent, with glass luster and pearl luster. Its hardness is about 2.5-3, and its relative density is in the range of 2.369-2.39. The chemical properties of brucite are stable, it is easily soluble in hydrochloric acid, it can release water vapor when heated, and it can be converted into other forms of magnesium compounds under certain conditions. III. World Distribution The distribution of brucite in the world is not uniform, mainly concentrated in the following countries and regions: China: China is one of the countries with the richest brucite resources in the world, especially in Fengcheng, Liaoning, Ningqiang, Shaanxi, Ji'an, Jilin, Qilian Mountains, Qinghai, Shimian, Sichuan, Xixia, Henan, and Kuandian, Liaoning. Among them, Liaoning Fengcheng has the highest reserves, reaching 10 million tons, Shaanxi Ningqiang area has proven brucite reserves of 7.8 million tons, and Jilin Ji'an has proven brucite reserves of 2 million tons. Russia: Russia is also a country with abundant brucite resources, especially in the Kulidur area in the south of Xiaoxing'anling, where there are large-scale brucite deposits. Canada: Canada's brucite resources are mainly distributed in Ontario, Quebec and other places. The United States: The brucite resources in the United States are mainly distributed in Nevada, Texas and other places. North Korea: North Korea's brucite resources are mainly distributed in the Bokionton area. Norway: Norway's brucite resources are also distributed to a certain extent. IV. Market Application Brucite has a wide range of applications in many fields due to its unique physical and chemical properties, especially in refractory materials, environmental protection, chemical industry and other fields, showing great potential. In the field of refractory materials, brucite is widely used in the production of refractory materials such as refractory bricks, refractory coatings and lining materials due to its high magnesium content and good refractoriness. Especially in the steel industry, heavy-burned magnesia (brucite) made of brucite is widely used due to its high density (>3.55 g/cm³) and high refractoriness (>2800°C). In the field of environmental protection, brucite can be used for wastewater treatment, especially for the removal of heavy metal ions such as nickel, copper, cadmium, manganese and chromium. In addition, it can also be used as a neutralizing agent for acidic wastewater, and there is a great demand for treating soil contaminated by acid rain and adjusting soil pH. Brucite can also be used as a flue gas desulfurization agent to reduce the harm of high mercury and high sulfur fuels to the environment. In the field of chemical products, brucite can be used as filler and coating for chemical products, especially in the papermaking industry, brucite can be used as filler to improve the whiteness and quality of paper. In addition, brucite also has important applications in the preparation of magnesium chloride, magnesium oxide, etc. In the field of flame retardant materials, brucite is used as a flame retardant in the plastics industry due to its halogen-free, non-toxic and highly efficient flame retardant properties. It can effectively absorb heat, reduce the temperature of the combustion system, and slow down the burning rate of the material. The flame retardant mechanism of brucite is that it decomposes and releases crystal water at high temperature, absorbs heat, and reduces the concentration of combustible gas, thereby playing a flame retardant role. In other fields, brucite is also widely used.Brucite is also used to prepare various composite materials, such as composite materials combined with silicon, phosphorus, nitrogen and other elements to improve their performance. In agriculture, brucite can be used to treat beet juice as a decolorizer. In addition, brucite can also be used as a catalyst carrier and catalyst to play a role in chemical reactions. V. Purity and Quality Determination of Brucite As an important industrial mineral, its purity and quality are directly related to the performance and quality of the final product. High-purity brucite can not only improve the performance and quality of the product, but also reduce production costs and improve the market competitiveness of enterprises. Therefore, ensuring the purity and quality of brucite is an important prerequisite for the development of the industry. Generally, brucite can be divided into three grades according to the content of magnesium oxide, as shown in the figure below: VI. Sorting Method The sorting technology of brucite has experienced a development process from traditional hand sorting to mechanical sorting, and then to modern photoelectric sorting and artificial intelligence sorting. In the early days, due to the similar physical and chemical properties of brucite and associated minerals, traditional physical methods were difficult to achieve effective separation. Subsequently, the development of photoelectric mineral processing technology provided new possibilities for the sorting of brucite. By identifying the surface features of the ore such as color and texture, automatic sorting can be achieved to a certain extent. In recent years, with the development of artificial intelligence technology, intelligent sorting equipment can achieve more accurate sorting by learning and identifying the characteristics of the ore. At present, the sorting technology of brucite mainly includes the following aspects: Gravity separation and magnetic separation technology: physical separation is carried out by using the density and magnetic difference between brucite and impurities. Chemical purification method: synthesize brucite through chemical reaction, remove impurities and improve purity. Flotation separation technology: By adding specific adjusters, such as PCE-11 and PDP to strengthen the DDA system, the floatability difference between brucite and serpentine in the flotation process can be expanded to achieve effective separation. Intelligent identification and sorting technology: By introducing advanced image recognition technology and artificial intelligence algorithms, brucite can be efficiently and accurately graded, impurities can be removed, and the quality of the original ore can be improved. For example, the intelligent sorting equipment developed by Mingde Optoelectronics Technology Co., Ltd. can perform multi-dimensional feature recognition and sorting of ores in different size ranges through optoelectronic systems and artificial intelligence algorithms, greatly improving the accuracy and efficiency of sorting. AI Intelligent Mineral Sorting Machine Since its establishment in 2014, Hefei Mingde Optoelectronics Technology Co., Ltd. has been professionally researching, producing and selling mining optoelectronic sorting equipment. The staff went deep into mines across China to investigate the difficulties and pain points of mining sorting problems, and developed a batch of precise sorting optoelectronic ore sorting equipment. Among them, the AI ​​intelligent sorting machine has high sorting accuracy and large sorting volume, which is very popular in the market and has significant effects on the sorting application of brucite. In general, brucite sorting technology is developing rapidly towards higher efficiency, lower cost and more environmental protection. With the continuous improvement and promotion of technology, brucite is expected to play a greater role in industrial applications in the future.
  • Market Application and Processing of Mica Market Application and Processing of Mica Aug 23, 2024
    I. Overview Mica is an important industrial mineral with a layered structure and good physical and chemical properties, so it has a wide range of applications in many fields. There are many types of mica, including but not limited to muscovite, phlogopite, biotite, lepidolite, etc. Each type of mica has its own specific composition and properties, which determines their application in different fields. Mica belongs to the layered structure of the monoclinic system, and its chemical formula is KAl2(AlSi3O10)(OH)2. Its hardness is generally between 2.5-4, and its specific gravity is about 2.77-2.88g/cm³. Mica crystals are usually plate-shaped pseudo-hexagonal, transparent to translucent, with a very complete set of bottom cleavage, so they can be easily peeled into thin sheets. These thin sheets have significant elasticity and toughness, and can be bent to a certain extent without breaking easily. Mica minerals can be divided into three subgroups according to chemical composition and optical characteristics: muscovite subgroup, biotite-phlogopite subgroup and lepidolite subgroup. The color can range from colorless to white, and sometimes it can appear light yellow, light green or light red. Its luster is similar to glass or pearl, so it will have a similar effect when observed at a certain angle. In addition, mica has strong insulation and heat resistance, and can maintain stable performance under high temperature conditions, which makes it particularly important in the electronics and electrical industries. The main chemical components of mica include aluminum oxide (Al2O3), iron oxide (Fe2O3), potassium oxide (K2O), etc. In addition to these main elements, mica may also contain trace amounts of sodium, magnesium, iron, lithium, etc., as well as water and oxides. These chemical components give mica different physical properties, such as electrical insulation, heat resistance and chemical stability. II. Global distribution of mica The global distribution of mica mineral resources is relatively wide, and the main production areas include India: India is rich in mica mineral resources, especially in Bihar and Andhra Pradesh, where there are a large number of mica mines. Russia: Russia's mica resources are also very rich, especially in Siberia. China: China's mica resources are mainly distributed in Xinjiang, Sichuan, Inner Mongolia and other provinces, especially in Xinjiang Altai, Sichuan Danba and Inner Mongolia Tuguiwula. Madagascar: This African island country is also an important producer of mica, especially in its northern region. Brazil: Brazil's mica resources are mainly concentrated in the southeastern region. Argentina: Argentina also has certain mica mineral resources. III. Market Application The market application of mica is very wide, including but not limited to the electronics industry, building materials, automobile manufacturing, power equipment, cosmetics, fireproof materials, etc. The application of mica in these fields not only reflects its excellent physical and chemical properties, but also reflects its irreplaceable importance in modern industry and daily life. Electronic Industry In the electronics industry, mica is used as a high-frequency insulation material, especially in high-frequency circuits, where mica has a small dielectric loss and can effectively reduce signal loss. In addition, mica is also used to make printed circuit boards because it can withstand high temperatures without losing its insulation properties. Building Materials In the construction industry, mica is used as an efficient thermal insulation material, which can prevent energy loss caused by the temperature difference between the inside and outside of the building. Mica also provides additional fire protection because its layered structure can prevent the spread of flames. Automotive Manufacturing In automotive manufacturing, mica is used as part of the body material to improve the heat resistance and safety of the vehicle. Mica can also be used in brake pads to improve its heat resistance and reduce the heat generated by friction. Power Equipment In power equipment, mica is used as an insulating material, especially for transformers, cables and other power equipment. Mica's high heat resistance and chemical stability make it ideal for these applications. Cosmetics In the cosmetics industry, mica is used as a brightening ingredient to make products look more shiny. In addition, mica's flaky structure helps fill in skin lines and make the skin look smoother. Fireproof Materials In fireproof materials, mica is used as an effective thermal insulation and fire-resistant material. Mica's multi-layered structure can reflect heat back, thereby reducing the damage caused by fire. Ⅳ. Processing Process Complete mica processing involves a series of process flows from the mining, sorting, crushing, grinding of raw ore to the final mica products. This time we will briefly introduce the three links of crushing, sorting and grinding. Crushing The crushing of mica ore is an important link in the mica processing process, which directly affects the subsequent processing and application performance of mica. At present, the main crushing equipment on the market includes jaw crusher, roller crusher, cone crusher and other types, each of which has its specific application scenarios and advantages. The roller crusher plays an important role in the crushing of mica ore. It has the advantages of high crushing ratio, strong processing capacity, low maintenance cost, and precise control of finished product particle shape. By adjusting the roller spacing and crushing pressure, the discharge particle size can be effectively controlled to ensure the integrity of the mica sheet, which is conducive to improving the quality and application value of the product. Jaw crushers are often used in the crushing of lithium mica ore, especially for the initial crushing of large pieces of raw ore, crushing the ore to a suitable feed fineness, creating conditions for subsequent processing. Water jet mill crushing technology is a new type of mica crushing method. It cuts and crushes the material through high-speed jet water flow. It has the advantages of high crushing fineness, high precision, less dust generation and less wear on equipment. The crusher for mica production with a multi-stage crushing structure prepares for later processing through multi-angle crushing to improve work efficiency. The crushing process of mica ore usually includes the mining and screening of raw ore, crushing, screening and grading, and air separation. The specific process includes the use of a jaw crusher for primary crushing, followed by secondary crushing with a roller crusher, and finally a particle size screening by a screening machine to achieve the required particle size distribution. What needs to be paid attention to during the crushing process is the selection and parameter setting of the crushing equipment, as well as the screening and separation effect after crushing. For example, although the water jet mill crushing mica technology has many advantages, it also has the problems of high equipment cost and narrow crushing particle size range, and the mica mineral needs to be pretreated. Sorting The sorting technology of mica is a key link in the processing of mica ore, which is directly related to the quality and output of mica products. The methods of mica sorting mainly include hand sorting, gravity sorting, magnetic separation, flotation and photoelectric sorting. Hand sorting is the oldest and most direct sorting method, which is suitable for the sorting of large mica. Workers can directly pick out the separated mica on the mining face or ore pile. Gravity separation is a method of sorting using the difference in mineral density, which is suitable for coarse-grained mica. Commonly used gravity separation equipment includes jigs, shaking tables and spiral chutes. Magnetic separation is a method of sorting using the difference in mineral magnetic properties, which is mainly used to sort mica containing iron impurities. Magnetic separation equipment mainly includes dry magnetic separators and wet magnetic separators. Flotation is a method of sorting using the difference in physical and chemical properties of the mineral surface. It is currently the most widely used sorting method and is suitable for fine-grained mica. During the flotation process, attention should be paid to factors such as the selection and dosage of reagents, flotation time and concentration. Mica photoelectric sorting technology is a technology that uses optical and electrical properties to classify mica ores. This technology is mainly used in the field of ore processing. By identifying the differences in surface characteristics such as color, texture, and gloss between mica and other minerals, effective separation of mica is achieved. With the continuous advancement of science and technology, photoelectric sorting technology has been widely used in the mining field, especially in the beneficiation process of mica ores, showing significant advantages. Compared with other sorting methods, photoelectric sorting has the characteristics of high efficiency, low cost, environmental protection and high intelligence level. Single-layer AI Ore Sorting Machine In practical applications, photoelectric sorting technology has been proven to effectively improve the beneficiation efficiency of mica ore. For example, Mingde Optoelectronics' photoelectric sorting equipment has achieved high-precision identification and sorting on multiple metal and non-metallic minerals, including lithium mica, spodumene, barite, etc. Double-layer AI Ore Sorting Machine Hefei Mingde Optoelectronics Technology Co., Ltd. has introduced AI and big data technology in the field of photoelectric sorting. The AI intelligent sorting machine launched can accurately extract the surface characteristics of mica ore and realize the accurate sorting of ore and impurities. Grinding The grinding process is carried out after flotation is completed, with the purpose of further refining the mica after flotation to the required particle size. The grinding process usually includes two stages: primary grinding and secondary grinding. By adjusting the grinding medium and time, the fineness and uniformity of mica particles can be effectively controlled. There are two main methods for mica grinding: dry and wet, each of which has its own characteristics and applicable occasions. Dry grinding refers to grinding without adding any liquid. This method is simple to operate and has low cost, but due to the lack of lubrication, the heat generated by grinding may cause damage to the mica crystals, affecting its flaky structure and exfoliation. The equipment commonly used for dry grinding includes Raymond mills, ball mills, etc. Wet grinding is to add an appropriate amount of water or other liquids during the grinding process to protect the mica crystals through liquid lubrication and cooling, reduce heat accumulation, and thus protect the structure of the mica from being destroyed. Wet grinding can obtain mica powder with higher purity and better exfoliation, but it requires an additional drying step, and the equipment investment and energy consumption are relatively high. The processing quality of mica powder is directly related to the performance of the final product, so it is particularly important to choose a suitable mill. The selection of the mill needs to consider the characteristics of mica and the required fineness, purity and other requirements. Key points for selecting a mill Type of mill: According to the physical and chemical properties of mica, as well as the required fineness and purity, you can choose a high-pressure mill, a vertical mill, an ultrafine mill, etc. Grinding efficiency: An efficient mill can improve production efficiency and save energy costs. For example, some grinding mills can increase production by more than 40% through optimized design, while saving 30-40% of electricity consumption costs. Environmental performance: Modern grinding mills emphasize environmental performance and are equipped with pulse dust collectors and other equipment to achieve efficient dust removal and meet environmental protection and noise reduction requirements. Product specifications: The grinding mill should be able to produce mica powder specifications that meet the requirements, such as 325 mesh, 600 mesh and other different finenesses. Process adaptability: The grinding mill should be able to adapt to different grinding processes, such as dry and wet methods, and whether special processes such as acid treatment are required to improve the whiteness of mica powder. Specific equipment recommendation High-pressure grinding mill: Suitable for large-scale production, high-pressure suspension roller grinding mills and other models can be provided, suitable for processing mica ores with higher hardness. Vertical grinding mill: Suitable for large-scale production, with high efficiency and low energy consumption, the product particle size can be adjusted to meet different needs. Ultrafine grinding mill: Suitable for the preparation of ultrafine mica powder, can reach micron-level fineness, suitable for application scenarios with strict requirements on fineness. Airflow mill: suitable for dry grinding, crushing mica through high-speed airflow, suitable for preparing ultrafine powder. This is the introduction of mica. In short, as a multi-purpose mineral, mica is not only widely used in industry, but also plays an important role in scientific research and life. With the development of processing technology and different innovations of new technologies, the application prospects of mica will become broader and broader.
  • New Method for Gold Ore Sorting - Photoelectric Sorting New Method for Gold Ore Sorting - Photoelectric Sorting Aug 30, 2024
    Gold has always been a dazzling word. It is a symbol of wealth and power, and it also carries the profound connotation of culture, history and religion. At present, the main sources of gold are mining, recycling, sale and leasing by central banks and international organizations, and seabed mining. Mining has always been the most traditional and stable source of gold, accounting for about 70% of the entire gold market. Gold mines are widely distributed, and there are gold resources in many countries and regions around the world. According to the latest information, gold resources are mainly concentrated in Africa, Asia, South America, North America and Australia. Among them, Africa has the richest gold resources, and South Africa, Ghana, Senegal and other countries are the main gold production areas in Africa. Asia, especially China, Russia and India, also has a large amount of gold resources. Brazil, Peru and Colombia in South America are also important gold production areas. Canada and the United States in North America are the main gold production areas, and Australia is one of the most important gold resource countries in the world. Gold mining is a complex and technology-intensive process, involving multiple links from exploration, mining, beneficiation to smelting. Gold mining requires not only advanced equipment and technology, but also environmental protection and safety production requirements. Exploration is the first step in gold mining. The location and reserves of gold mines are determined through geological exploration technology. Preparatory work before mining includes infrastructure construction, such as building roads and setting up necessary facilities. There are two main mining methods: open-pit mining and underground mining. Open-pit mining is suitable for surface deposits, while underground mining is suitable for deeper ore bodies. During the mining process, commonly used equipment includes drilling machines, blasting equipment and mine cars. Ore dressing is to process the mined ore to extract the gold. Ore dressing processes include crushing, grinding, screening, gravity separation and flotation. Crushing and grinding are to reduce the particle size of the ore for subsequent processing; screening is to separate ores of different particle sizes; gravity separation and flotation are to separate gold and other minerals by physical and chemical methods. With the continuous advancement of science and technology, photoelectric separation has also become an important way of gold ore separation. It detects minerals through photoelectric sensors based on the optical properties of minerals, such as color, texture, gloss, shape, etc., to achieve mineral sorting. Photoelectric sorting technology is developed on the basis of traditional mineral processing technology. It has the advantages of high efficiency, environmental protection, and energy saving. The sorting equipment mainly consists of four parts. Feeding system: Through the vibrating feeder and crawler, the materials to be sorted are fed into the detection area of ​​the photoelectric system at a constant speed to ensure the stability of the sorting effect. Photoelectric system: It consists of a light source, a background plate, a sensor or an X-ray source, and a transmission plate. By collecting the comprehensive characteristics of the ore surface or the density difference, the ore is imaged in high definition, and the sensor is converted into an electrical signal to convey it to the electronic control system. Control system: Receives the electrical signal transmitted by the photoelectric system, identifies and analyzes it, and through model training and learning, intelligently identifies and compares good and bad ores, and realizes the identification and sorting of non-massive ore data. Sorting system: According to the instructions of the electronic control system, the defective products are blown into the defective product tank through the spray valve to achieve the sorting purpose. AI Ore Sorting Machine The advantage of photoelectric sorting technology for gold mines is that it can improve the efficiency and accuracy of mineral processing while reducing environmental pollution. Compared with traditional physical and chemical mineral processing, photoelectric mineral processing has lower energy consumption, and the cost of mineral processing per ton is about 1 yuan, which is much lower than the average cost of traditional methods. In addition, photoelectric mineral processing has zero pollution to the environment and is a greener way of mineral processing. Hefei Mingde Optoelectronics Technology Co., Ltd. has been focusing on the research and development, production and sales of photoelectric sorting equipment since its establishment. For gold mine sorting, the company currently has two main equipment solutions to choose from: for those gold mines with better dissociation and obvious surface characteristics of ore and impurities, the company's AI intelligent sorting machine can achieve effective sorting. For gold mines with good ores and impurity surface characteristics that are not obvious, the company has launched an X-ray intelligent sorting machine, which can combine the analysis of different densities of ore and impurities to achieve gold mine sorting. X-ray Intelligent Ore Sorting Machine Gold mines are an important natural resource, and their mining and processing have a profound impact on the national economy and the global market. With the advancement of science and technology and changes in market demand, gold mining and mineral processing technologies continue to develop and innovate to adapt to more efficient and environmentally friendly mining models. At the same time, as a metal with multiple functions, gold's position in the field of financial investment cannot be ignored. In the future, as the global economic landscape evolves, the gold mining industry and its related investment products will continue to play an important role on the international stage.
  • Market Application and Sorting of Industrial Silicon Market Application and Sorting of Industrial Silicon Aug 31, 2024
    Overview Industrial silicon, also known as metallic silicon or crystalline silicon, is an important industrial raw material. Its main component is silicon element, and the content is generally around 98%. In recent years, products containing 99.99% Si have appeared on the market. The rest of industrial silicon is mainly composed of impurities such as iron, aluminum, and calcium. Industrial silicon is divided into various specifications due to its different uses. Common grades include 553, 441, etc. These grades represent the maximum content of the main impurity elements iron, aluminum, and calcium in the product. Industrial silicon is widely used in many fields such as metallurgy, chemical industry, machinery, electrical appliances, and aviation. The chemical composition of industrial silicon mainly exists in the form of silicon element, and the content is usually above 98.7%. In addition, it also contains a small amount of impurities such as iron, aluminum, and calcium. The physical properties of industrial silicon are high hardness, high melting point, good heat resistance, and high resistivity. At the same time, it is non-conductive below 650°C and can be used as an insulating material; it begins to conduct electricity above 650°C, and its conductivity continues to increase with the increase of temperature. Global Industrial Silicon Production Pattern and Trade Flow At present, the global industrial silicon production capacity is concentrated in China, Brazil, Norway, the United States, Russia and other countries. Among them, Brazil and the United States have high-quality silicon ore resources, and Norway has abundant hydropower resources. The growth of China's industrial silicon production capacity is mainly contributed by domestic production capacity. China has an inherent production cost advantage and has been ranked first in the world for many years. China, Brazil, Norway and other countries are not only the main producers of industrial silicon, but also the main exporters. In 2021, China's industrial silicon (including 97 silicon and silicon) production accounted for 78% of the world, and Brazil (7%), Norway (6%), the United States (3%), France (3%) and other countries also have a certain output. The production of industrial silicon mainly adopts the submerged arc furnace method, which uses the arc energy between electrodes to melt the metal. It is the main process for the production of industrial silicon in China. During the production process, silica and carbonaceous reducing agent are first placed in the submerged arc furnace, and industrial silicon liquid is generated through high-temperature reduction reaction, and then block or granular industrial silicon is generated through casting, cooling, crushing and other steps. Market Application of Industrial Silicon Due to its special physical and chemical properties, industrial silicon has a wide range of applications in many fields. The following are the applications of industrial silicon in different fields: Photovoltaic industry Industrial silicon plays an important role in the photovoltaic industry. Polycrystalline silicon and monocrystalline silicon panels are the core components of solar photovoltaic power generation, and high-quality industrial silicon is an indispensable raw material in the preparation of these materials. Industrial silicon is purified through a series of processes to generate polycrystalline silicon and monocrystalline silicon for use in the photovoltaic industry and the electronics industry. Crystalline silicon cells are mainly used in solar rooftop power stations, commercial power stations and urban power stations with high land costs. They are the most technologically mature and widely used solar photovoltaic products, accounting for more than 80% of the world's photovoltaic market. Semiconductor industry In the field of semiconductor manufacturing, the high purity of industrial silicon ensures the reliability and stability of the semiconductor manufacturing process. Industrial silicon is the basic material of semiconductor chips, and the presence of any impurities will affect the quality and performance of the chips. Industrial silicon can produce high-quality silicon wafers through melting and crystal growth technology, which are used to manufacture electronic devices such as transistors and integrated circuits. Aluminum alloy manufacturing Industrial silicon plays a key role in the production process of aluminum alloys. As an alloying element, industrial silicon can adjust the properties of aluminum alloys by controlling the amount of addition, such as improving hardness, strength and wear resistance. In addition, industrial silicon can also improve the heat resistance and corrosion resistance of aluminum alloys, making them perform better in high temperature and corrosive environments. Aerospace Industrial silicon is used to manufacture high-performance structural materials in the aerospace field due to its characteristics such as light weight, high strength and high temperature stability. For example, in the outer shell material of spacecraft, industrial silicon can provide excellent resistance to thermal stress and can also resist high-speed wear. Industrial silicon can also be prepared into high-strength spacecraft parts, such as engine turbine blades. Chemical industry In the chemical industry, industrial silicon can be used as key raw materials such as catalysts, fillers and fire retardants. For example, catalysts can reduce the activation energy of the reaction, increase the reaction rate and selectivity; fillers can increase the contact area of ​​the reactants and improve the reaction efficiency; fire retardants can improve the fire resistance of the material and reduce the occurrence of fire accidents. New energy vehicles In the field of new energy vehicles, industrial silicon is widely used in the manufacture of key components such as batteries, motors and electronic controls. The high energy density and stability of industrial silicon make it an ideal material for new energy vehicle batteries. Construction and electronics Industrial silicon is also used in building sealing materials and waterproof materials, as well as in the field of electronics and electrical insulation. For example, silicone rubber has good high temperature resistance and is used to make medical supplies, high temperature resistant gaskets, etc. Sorting of Industrial Silicon As an important industrial raw material, the sorting technology of industrial silicon plays a vital role in ensuring product quality and improving resource utilization. The sorting technology of industrial silicon mainly includes two categories: physical methods and chemical methods. Physical methods are mainly based on the physical properties of minerals, such as density, conductivity, magnetism, etc. for sorting. Chemical methods use the differences in the chemical properties of minerals for separation. In practical applications, multiple methods are often combined to achieve the best sorting effect. Physical sorting technology Physical sorting technology mainly includes heavy medium beneficiation, flotation, magnetic separation and electrostatic separation. Heavy medium beneficiation uses the difference in mineral density to achieve separation; flotation relies on the chemical properties of the mineral surface for separation; magnetic separation uses the difference in the magnetic properties of minerals for sorting; and electrostatic separation uses the difference in the electrical properties of minerals for sorting. These methods have their own advantages and disadvantages and are suitable for different types of ores and sorting requirements. Chemical sorting technology Chemical sorting technology includes acid-base leaching, solvent extraction and other methods. These methods are mainly used to process ores that are difficult to effectively sort by physical methods, especially when the ore contains fine particles or film-like impurities that are difficult to separate by physical methods. New sorting technology In recent years, with the advancement of science and technology, new sorting technologies have gradually been applied to the sorting process of industrial silicon. For example, artificial intelligence sorting technology achieves higher-precision sorting by identifying the multi-dimensional three-dimensional characteristics of silicon slag and establishing a model. In addition, color sorting technology is also used in the purification of silica raw materials. By distinguishing the difference in color, sorting is carried out, which effectively improves the purity of silica. Since its establishment in 2014, Hefei Mingde Technology Co., Ltd. has been a high-tech enterprise dedicated to the research and development, design, production, sales and service of ore sorting equipment. The current main products include ore sorting machine, AI intelligent sorting machine, X-ray intelligent sorting machine, foreign body removal robot and mining automation production line, etc. AI Ore Sorting Machine Among them, the AI ​​intelligent sorting machine produced by the company can accurately extract the surface features of industrial silicon, conduct deep learning to form a model, and match the industrial silicon with the existing model in the subsequent sorting, so as to achieve accurate sorting. At present, the machine has been put into the actual production of industrial silicon and has received very good market response. Heavy Duty AI Ore Sorting Machine As an important industrial raw material, industrial silicon plays an indispensable role in modern industry. From its production process to application field, to market status and development trend, industrial silicon has demonstrated its unique value and broad development prospects. With the continuous advancement of technology and changes in market demand, the industrial silicon industry will continue to maintain a rapid development trend and make greater contributions to the development of human society.

dejar un mensaje

dejar un mensaje
Si está interesado en nuestros productos y desea conocer más detalles, deje un mensaje aquí, le responderemos tan pronto como podamos.
enviar

Hogar

Productos

whatsApp

contacto